FLASH VACUUM PYROLYSIS OF 2-BENZYLPYRIDINE N-OXIDES. SYNTHESIS OF METHYLPYRIDO[1,2-a]INDOLES

Akio OHSAWA, Takayuki KAWAGUCHI, and Hiroshi IGETA* School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo 142

Flash vacuum pyrolysis of 2-benzylpyridine N-oxides afforded pyrido[1,2-a]indole and its various methyl-substituted derivatives in moderate yields. Benzo[g]quinoline in the pyrolyses of 2-(o-methylbenzyl)pyridine N-oxide and 2-benzyl-3-methylpyridine N-oxide, and 2-(β-styryl)pyridine in the reaction of 2- $(\beta$ -phenethyl)pyridine N-oxide were major products as exceptional cases.

We have reported 1) that the flash vacuum pyrolysis 2) (FVP) of 2-picoline N-oxide (1) gave products derived from the intermediary 2-picolyl (2-pyridylmethyl) radical (2).

We now wish to report an application of phenyl(2-pyridyl)methyl radicals (3), which are formed from 2-benzylpyridine N-oxides (4) through the FVP, to the synthesis of methylpyrido[1,2-a]indoles (5).

As a preliminary experiment, 2-ethylpyridine N-oxide was pyrolysed 1 at 800°C (quartz tube, ø=10 mm, <u>I=150</u> mm) under 0.1 mmHg. Vinylpyridine was obtained (45%), suggesting the existence of the radical 6 in the reaction course.

$$\begin{array}{c|c}
 & & & & & \\
 & \downarrow \\$$

Similarly, the \underline{N} -oxides $\underline{4}$ were pyrolysed (800°C, 0.1 mmHg). An intramolecular cyclization of the radical 3 took place to give pyrido[1,2-a]indoles (5) as shown in Scheme I (Table I).

The starting materials were almost completely decomposed under the described conditions, and column chromatography (hexane/alumina) and recrystallizations from pentane or hexane were employed for the isolation of these products. All these pyridoindoles were appreciably unstable.

	4		5 <u>ª</u>		0	ther a
\mathbb{R}^{1}	R ²	R ³	R^1 , R^2 , R^3	Mp, °C	Yields, %	roducts(%)
Н	Н	Н	Н	175 (lit ^b 174)	74	***************************************
Н	<u>p</u> -CH ₃	Н	3-CH ₃	138	69	
Н	<u>m</u> -CH ₃	Н	2 - C H $_3$ $\frac{c}{}$	108	25	
	3		4 - C H 3 C	(-)	16	
Н	<u>o</u> -CH ₃	Н	1 - C H $_3^{\circ} \frac{d}{}$	(-)	trace	<u>7</u> (47)
6-CH ₃	Н	Н	6-CH ₃	59	42	
5-CH ₃	Н	Н	7 - C H 3	138	43	
4-CH ₃	Н	Н	8-CH ₃	152	51	
3-CH ₃	Н	Н	9-CH ₃	103	10	1 (52)
Н	Н	CH3	10-CH ₃	69 (lit <mark>e</mark> 69)	13	<u>8</u> (41)

FVP of 2-Benzylpyridine N-Oxides (4) Table I.

- a All isolated products have satisfactory analytical and spectral data.
- \overline{b} Physical data of the compound were fully identical with those of pyrido[1,2- \overline{a}]indole; Y. Arata, T. Ohashi, and K. Uwai, Yakugaku Zasshi, 1955, 75, 265.
- c Although NMR and TLC of the crude products showed the presence of 4-methyl derivative, isolation of the product was difficult (the yield was determined by NMR). 2-Methyl derivative was readily isolated.
- \underline{d} Isolation of 1-methylpyrido[1,2- \underline{a}]indole was failed, although NMR and TLC of the reaction mixture suggested the presence of the compound in the mixture.
- Physical data of the compound was fully identical with those reported for 10-methylpyrido[1,2-a]indole; R. Robinson and J. E. Saxton, J. Chem. Soc., 1952, 976; H. H. Wasserman and W. R. Waterfield, Chem. and Ind., 1961, 1220.

Thus, the described FVP of 2-benzylpyridine N-oxides was found to be practical for the synthesis of new methylpyrido[1,2-a]indoles.3)

In some cases, methyl groups of the intermediary radicals participated in liberation of a hydrogen; and $benzo[\underline{g}] quinoline \ \, \textbf{(7)} \ \, was \ \, a \ \, major \ \, product \ \, in \ \, the \ \, FVP \ \, of \ \, 2-(\underline{o}-methylbenzo)pyridine \ \, \underline{N}-oxide \ \, and \ \, 2-benzyl-3-in \ \, and \$ methylpyridine \underline{N} -oxide, and an olefin $\underline{8}$ was a major product in the FVP of 2-(β -phenethyl)pyridine N-oxide (Scheme II).

This work was partially supported by a Grant-in-Aid for Scientific Research (No. 56570729) from the Ministry of Education, Science and Culture, Japan.

References

- 1) A. Ohsawa, T. Kawaguchi, and H. Igeta, Chem. Pharm. Bull. (Tokyo), 1981, 29, 1481.
- 2) R. F. Brown, "Pyrolytic Methods in Organic Chemistry," Academic Press, N.Y. 1980.

 3) Although some syntheses of pyrido[1,2-a]indoles have been known, reported yields are usually low; for the syntheses of the unsubstituted compound, see ref. b in Table I; for the 10-methyl derivative, see ref. e in Table I.

(Received September 24, 1981)